Cairo University

MTPR Journal



& doi:
KING Abdulaziz City of Science and Technology, Saudi Arabia

Physics Department, Faculty of Science, Kwait University, Kuwait

Astronomy and Meteorology Department, Faculty of Science, Cairo University, Egypt

Astronomy and Meteorology Department, Faculty of Science, Cairo University, Egypt

Vol./Issue: 13 , id: 390

Nile and earthquake periodicities are examined in the light of solar and geomagnetic periodicities in order to uncover the role of the sun in initiating such terrestrial phenomena. The Nile periodicities under considerations covers the period 622-1420 AD. 1749- 1800 and 1870-1945 and are taken from an earlier paper by Yousef and El-Rae (1995). It is found that 11 yr and 21 yr solar periodicities affected the White Nile originating from the Equatorial plateau. On the other hand the Blue Nile arising mainly from Lake Tana in Ethiopia was affected mostly by the 3.3 yr, 2.9 yr, 2.7 yr, and the 2.52 yr periodicities. Such short periodicities are also present in cosmic rays. This is fairly true as during weak solar cycles series at the bottom of the 80-120 year Solar Wolf-Gleissberg Cycles, the level of the second to last of the weak cycles rise and fall coherently with full solar cycles with a correlation coefficient of about 0.9. Rain over Ethiopia is affected by the Monsoon precipitation which is related to the quasi biennial oscillations QBO of the equatorial zonal wind between the easterlies and the westerlies in the tropical stratosphere with a mean period of 29 months. We propose that the QBO are stimulated by the 2.52-2.48 yr solar periodicities. The 2.52 and 2.48 yr periodicity is strong in odd solar cycles 21 and 23. Generally speaking, it looks that different solar periodicities are space-time dependant and that they affect different regimes of terrestrial responses. In the case of earthquakes, we think that they are related to geomagnetic storms initiated by solar stimuli. Several solar periodicities are found in earthquakes. We postulate that electric currents in the ring current and in the ionosphere induce surface as well as deep electric currents in the magma thus produce motion and disturbances of the plates and the magma leading to earthquakes and volcanoes.